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Interaction of a deep-water wave with a vertical cylinder is characterized using
techniques of high-image-density particle image velocimetry, in conjunction with
measurement of the transverse and in-line loading coefficients. Phase-locked patterns
of locally two-dimensional vortex formation are attainable only for sufficiently high
values of the Keulegan–Carpenter number KC, e.g. KC � 12. Even in these cases,
such patterns are interrupted by non-phase-locked patterns that, nevertheless, show
basic forms, including mode inversion or switching of the initially formed vortex from
the cylinder, along with patterns of symmetrical vortex formation, all represented by
patterns of instantaneous vorticity.

Three-dimensionality of the flow structure along the span of the cylinder shows, at
relatively low KC, patterns of transverse velocity v and streamwise vorticity ωx that
have well-defined spanwise spacing. This spacing decreases in a continuous fashion
with depth beneath the free surface, and is in accord with the decrease of local
KC with depth, i.e. decrease of the diameter of the local particle trajectory. Such
three-dimensional patterns are, however, not phase repetitive over a large number of
wave cycles.

At sufficiently high values of KC, it is possible to identify basic classes of three-
dimensional patterns. When regions of transverse velocity show like sign over a
significant spanwise extent of the cylinder, the transverse loading coefficient is
relatively large. As the number of zero crossings between the positive and negative
regions of v increases, the transverse loading coefficient decreases accordingly.
Generally speaking, at these higher values of KC, patterns of streamwise vorticity
are much less ordered, and of smaller scale; they are embedded within larger-scale
well-defined patterns of the transverse velocity v along the span.

Taken together, the patterns of locally two-dimensional (sectional) structure and the
three-dimensional structure along the span indicate a criterion for locally phase-locked
quasi-two-dimensional vortex formation: it occurs when the pattern of transverse
velocity is of the same sign over a significant spanwise distance along the span of the
cylinder.

1. Introduction
Cables, risers and other configurations are subjected to unsteady wave motion in

the ocean environment, which can lead to unsteady loading and vibration. In recent
decades, much effort has been devoted to investigations of wave–structure interactions.
The following summaries provide brief synopses of these advances.
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1.1. Flow structure due to planar oscillations of a cylinder or flow

If the wave has a wavelength that is very long, then the essential features of the
wave–cylinder interaction can be simulated with planar oscillations of the cylinder
in quiescent fluid or, equivalently, planar oscillatory flow past a stationary cylinder.
Irrespective of the approach, the primary physical parameters are the Keulegan–
Carpenter number KC= 2πA0/D, in which A0 is the displacement amplitude of either
the oscillatory flow or the cylinder motion and D is the diameter of the cylinder. In
addition, one must consider the Stokes number, β = fD2/ν, where f is the frequency
of the motion and ν is the kinematic viscosity. In recent decades, substantial advances
have been made in our understanding of patterns of vortex formation, as well as
the in-line and transverse forces on the cylinder. Investigations that address one or
more of these features include Singh (1979), Bearman et al. (1981), Sarpkaya &
Isaacson (1981), Ikeda & Yamamoto (1981), Iwagaki, Asano & Nagai (1983),
Williamson (1985), Obasaju, Bearman & Graham (1988), Dütsch et al. (1998a) and
Lin & Rockwell (1999).

Even for these simple scenarios of planar motion, significant departures from two-
dimensionality may occur. One indicator of the spanwise three-dimensionality is the
spanwise correlation coefficient of the fluctuating surface pressure. Such correlations
were measured by Obasaju et al. (1988) and Kozakiewicz, Sumer & Fredsøe (1992).
In addition, the sectional qualitative visualization of Obasaju et al. (1988) revealed
that the process of vortex formation on two different spanwise planes was not in
phase, which indicates the existence of three-dimensional mechanism.

Qualitative visualization along the span of the cylinder, performed by Honji
(1981), revealed ordered three-dimensional modes that had a spanwise wavelength
λ, normalized with respect to the cylinder diameter D, of the order of λ/D = 0.5
to 1.0; these experiments involved planar oscillation of the cylinder in quiescent
water. Sarpkaya (1986, 2002) further pursued this type of Honji instability, with
emphasis on its inception, in conjunction with the onset of separation and turbulence
on the oscillating cylinder. Tatsuno & Bearman (1990) extensively characterized the
possible types of three-dimensionality over ranges of Keulegan–Carpenter number
KC and Stokes number β . A number of regimes were identified with spanwise
wavelengths from λ/D = 0.8 to 6.0. Numerical simulation of these types of three-
dimensional modes was performed by Dütsch, Durst & Brenner (1998b) and Dütsch
(2000). Their simulations, which were performed at relatively low values of KC and
Reynolds number Re, showed spanwise structure having a wavelength λ/D = 2.5.
Elston, Blackburn & Sheridan (2000) undertook a direct numerical simulation in
conjunction with a Floquet analysis to characterize the three-dimensional modes as
a function of KC and β . They showed that the spanwise patterns involved ordered
concentrations of vorticity of wavelengths λ/D = 1.4 to 3.9.

1.2. Loading coefficients of a vertical cylinder in a wave

Interaction of a free-surface wave with a cylinder has focused almost entirely on the
loading coefficients of the cylinder. This loading has been defined by Ramberg &
Niedzwecki (1979), Chakrabarti (1980), Stansby, Bullock & Short (1983), Bearman,
et al. (1985) and Tørum (1989). Furthermore, simulation of the wave motion by
Sarpkaya (1984), which involved vertical oscillations of the cylinder in a planar
oscillatory flow, also yielded values of loading coefficients. Determination of the
loading is often done in a field environment, and a representative investigation
using this approach is Dean, Dalrymple & Hudspeth (1981). Sumer & Fredsøe (1997)
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provide a comprehensive assessment of the loading arising from wave–vertical cylinder
interaction, relative to the corresponding loading due to planar oscillatory flow.

1.3. Wave–vertical cylinder interaction

Very little effort has been devoted to characterization of the quasi-two-dimensional
(sectional) vortex patterns, or to the spanwise three-dimensionality arising from the
interaction of a wave with a vertical cylinder. Kaye (1989) employed qualitative
particle visualization at the free surface of a wave interacting with a vertical cylinder
in order to determine the overall patterns of vortex formation. Yang & Rockwell
(2002) employed quantitative imaging for the case of an intermediate wave–cylinder
interaction, whereby the oscillatory motion was predominantly in the horizontal
direction over the entire depth of the wave tank. For such an intermediate wave,
elongated elliptical particle motion occurs in the region immediately beneath the free
surface, which transforms to planar oscillatory flow as the bottom of the wave tank
is approached. Possible modes of quasi-two-dimensional (sectional) vortex formation
were not characterized in terms of patterns of vorticity and streamline topology,
which is one of the goals of the present investigation. Regarding three-dimensionality,
the total height H of the submerged portion of the cylinder was large compared to
its diameter, i.e. H/D = 55, and it was therefore possible to generate various types
of three-dimensional modes having long spanwise wavelengths, e.g. on the order of
10D. Embedded within these long-wavelength modes were streamwise concentrations
of vorticity ωx with spacings in the range of λ/D = 1 to 4.

For the case of a deep-water wave, the wake structure from the cylinder is expected
to exhibit even more complex three-dimensional modes along its span. For a given
cross-section of the near wake, which indirectly accounts for the existence of spanwise
three-dimensionality, Sirisup et al. (2004) describe a low-order simulation of the
flow patterns. This simulation is driven by experimental quantitative imaging of the
wake patterns. For very low values of KC, Ozgoren & Rockwell (2004) describe
transformations between phase-locked and non-phase-locked modes of sectional
vortex formation for stationary and oscillating cylinders in a deep-water wave.

The focus of the present investigation is on the interaction of a deep-water wave
with a vertical cylinder, with emphasis on representations of both the quasi-two-
dimensional (sectional) and three-dimensional flow physics. The distinctively different
characteristics of a deep wave, relative to shallow and intermediate waves, leads to
the definition of a number of issues, which are addressed in the following.

1.4. Overview of unresolved issues

The foregoing investigations have provided considerable insight and serve as a basis
for characterization of the flow structure due to interaction of a deep-water wave with
a vertical cylinder. A deep-water wave involves particle trajectories having a circular
form, whose amplitude decreases exponentially with depth. Furthermore, the axes of
these particle trajectories are orthogonal to the axis of the cylinder. One therefore
expects distinctive patterns of vortex formation in relation to the loading on the
cylinder. In essence, the major points, which to date have remained unclarified, are as
follows:

(i) The quasi-two-dimensional (sectional) structure of the wave-induced vortices has
not been addressed in relation to patterns of vortex formation arising from planar os-
cillations of the flow or cylinder. Furthermore, for such planar oscillations, it is possible
to attain consistent patterns of vortex formation over a large number of oscillation
cycles, i.e. phase locking of the shed vortices to the flow or body motion. The degree
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Figure 1(a). For caption see facing page.

to which phase locking occurs, if at all, has not been pursued for vortex shedding in
a deep-water wave. When phase-locking does not occur, classical phase-averaging of
a sequence of instantaneous phase-referenced states of the vortex formation does not
provide a valid representation of the actual physics of the vortex patterns.

(ii) The nature of the three-dimensional flow structure along the span of the cylinder
in a deep-water wave is expected to be particularly complex, in view of the lack of
uniformity of the wave. Even for planar oscillations of the cylinder or flow, well-
defined ordered patterns of three-dimensionality along the span of the cylinder occur,
as described above. The existence of analogous patterns in presence of a deep-water
wave has not been addressed. Moreover, the persistence, i.e. degree of phase-locking
over a number of wave cycles of possible spanwise patterns, remains unexplored.

(iii) The instantaneous loading coefficients on the cylinder will be, of course, a
function of the aforementioned flow structure. The link has not yet been estab-
lished between whole-field representations of the quasi-two-dimensional and three-
dimensional flow structure and the instantaneous in-line and transverse loading
coefficients.
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Figure 1. (a) Schematic of experimental facility for wave–structure interaction showing laser
illumination and image acquisition techniques. (b) Schematic of wave–cylinder interaction and
comparison of experimental and theoretical orbits of the deep-water wave.

The overall objectives of the present investigation aim to address these issues
using techniques of high-image-density particle image velocimetry, which allow
instantaneous and phase-averaged whole-field patterns of velocity, vorticity and
streamline topology. These representations of the flow structure can be interpreted
simultaneously with measurements of the cylinder loading.

2. Experimental system and techniques
A wave tank facility, which is designed for three-dimensional optical access, is

shown in figure 1(a). It is made of high-quality optical glass on its sides and bottom,
and allows laser illumination from arbitrary directions and corresponding imaging of
the quasi-two- and three-dimensional flow structure. This wave tank has a depth of
1018 mm, a width of 426 mm, and a length of 9300 mm. For all experiments, the water
level was maintained at a depth of 700 mm. A paddle-type wave generator with active
control involving force feedback (Edinburgh Designs, Ltd.) generated waves of desired
frequency and amplitude. An absorbent porous material was deployed at the opposite
end of the wave tank. It involved a 1270 mm long wedge (included angle of 19◦).
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As indicated in figure 1(a), a cylinder of diameter D = 12.7 mm and length
L =876 mm was mounted at the end of a strain gauge sting above the wave tank.
For the experiments described herein, deep-water waves of frequency f = 1.12 Hz
and amplitude A0 = 14.1 to 36.4 mm were employed. Amplitude A0 is the radius of
the orbital particle trajectory of the wave motion at the free surface. These wave
amplitudes correspond to values of Keulegan-Carpenter number at the free surface
of KC= 2πA0/D = 7 to 18. Unless otherwise indicated, the reference value of KC
throughout this paper is always evaluated at the free surface. For all experiments, the
value of the Stokes number β = fD2/ν = 164, and the maximum Reynolds number
Re =KCβ = 3000.

As indicated in figure 1(b), the deep-water wave has circular particle trajectories.
Theoretical and experimental representations are compared using dimensionless wave
amplitude A/A0, in which A is the radius of the local particle trajectory, versus depth
z. The theoretical variation of A/A0 versus z is

A

A0

= e2πz/λ,

where λ is free-surface wavelength; for the present study, λ= 1220 mm. At each of the
indicated depths, a technique of particle imaging, to be described subsequently, led to
the trajectory and thereby the experimental value of A/A0. As shown in figure 1(b),
the experimental data points are in accord with the theoretical variation.

Quantitative imaging of the flow structure due to the wave–cylinder interaction
involves techniques of high-image-density particle image velocimetry. End view
imaging, represented schematically at the top of figure 1(a), involved generation of a
vertical laser sheet which was positioned 1D away from the centreline of the cylinder,
and across its near wake. This end-view laser sheet was generated by employing a
continuous Argon-ion laser (20 W). The laser beam was reflected from a rotating
mirror with forty-eight facets. This mirror was located beneath the wave tank. The
effective scanning frequency generated by the rotating faceted mirror, ranged from
64 Hz to 250 Hz over the range of KC= 7 to 18. The scanning laser sheet illuminated
12 micron metallic-coated particles, which were essentially neutrally buoyant. The
particle images were captured on high-resolution 35 mm film using the camera and
bias mirror arrangement shown in the schematic at the top of figure 1(a). The
narrow vertical mirror shown in the plan view of figure 1(a) reflected the pattern
of particle images in this end view to the 35 mm camera located outside the wave
tank. In essence, this approach generates multiply exposed images of each particle
on the 35 mm film. For this configuration shown in figure 1(a), the magnification
was 1:11.27. Since a deep wave induces significant orbital motion only within certain
depth beneath free surface, the field of view was focused to the upper portion of
the submerged cylinder, i.e. 405.7 mm × 270.5 mm in the plane of the laser sheet, with
the top edge slightly above the wave surface. In order to convert the film-recorded
pattern of particle images to digital format, the 300 lines mm−1 resolution film was
digitized at 125 pixels mm−1. Use of a single-frame cross-correlation technique led to
the instantaneous velocity field. The corresponding size of the interrogation window
was 90 pixels × 90 pixels. In order to satisfy the Nyquist criterion, the interrogation
window is overlapped by 50%. The effective grid size of the velocity field was 4.06 mm.
Furthermore, to ensure that the criterion of high-image-density was satisfied, each
interrogation window contained at least 40 particle images.

For imaging of the quasi-two-dimensional flow structure, in the indicated horizontal
plane of figure 1(a), a digital technique (DPIV) was employed. Laser illumination was
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from a dual-pulsed Yag laser, located exterior to the wave tank. It generated a laser
sheet at a nominal depth of 4D beneath the free surface. Images were recorded by
a high-resolution CCD camera located beneath the wave tank. A mirror located
immediately beneath the wave tank reflected patterns of particle images to the
CCD camera. This camera had an array of 1000 pixels × 1016 pixels. Patterns of
instantaneous velocity were determined using a frame-to-frame correlation technique.
For this arrangement, the effective field of view of the plane of the laser sheet was
87.9 mm × 89.3 mm. The effective window size during interrogation was 32 pixels × 32
pixels, with an overlap of 50%. The effective grid size of the pattern of velocity
vectors was 1.42 mm. An exceptional case is for imaging of the phase-locked patterns
at KC= 12; the effective field of view was 58.9 mm × 59.9 mm, with an effective grid
size of 0.95 mm of the pattern of velocity vectors.

A high-sensitivity strain gauge system, which is designated in the top schematics of
figure 1(a), provided the instantaneous moments due to the in-line (x) and transverse
(y) forces acting on the cylinder. The centre of the strain gauge system was at an
elevation of 210 mm, which corresponded to 16.5D above the quiescent free surface.
The outputs from the strain gauge signal conditioners/amplifiers were fed to the
analog-to-digital board of the laboratory microcomputer. The in-line and transverse
forces generated moments, which were normalized by (1/2)ρU 2

0 DL2, to give the in-
line moment coefficient C∗

x and transverse moment coefficient C∗
y . In this term for

normalization, U0 represents the amplitude of the horizontal velocity fluctuation of
the wave motion at the free surface, and D and L are the diameter and submerged
length of the cylinder.

3. Quasi-two-dimensional (sectional) flow patterns
Figures 2 to 10 show patterns of the sectional flow structure for values of the

Keulegan-Carpenter KC= 7, 12, and 18, which generate three generic regimes of
vortex shedding. Since the local KC varies along the span of the cylinder, sectional
patterns at different spanwise locations differ. For the present investigation, all the
sectional patterns were obtained at a fixed spanwise location near the free surface,
which was illuminated by the horizontal laser sheet (plan view), as indicated in
figures 1(a) and 1(b). For each phase–averaged representation, four instantaneous
images were employed. The aim of this averaging process was to yield smoothing of
the instantaneous images, rather than to obtain a convergent phase average; clearly,
a larger number of instantaneous images is required for a true phase average, and
they could not be readily acquired using the present experimental approach.

At the lowest value of KC= 7, the patterns of figure 2 show the possible modes
of vortex formation in terms of patterns of instantaneous and averaged velocity
vectors V and 〈V 〉, as well as corresponding patterns of vorticity ωz and 〈ωz〉.
All instantaneous images were acquired at the same phase of the wave motion; it
corresponded to a phase of the free-surface deflection midway from the crest to the
trough of the wave at the location of the cylinder, as illustrated by the wave profile in
figure 1(b). These instantaneous images are designated as (i), (ii), and (iii) in figure 2.
For the set of images designated as (i), the pattern of V shows a rightward directed
jet immediately adjacent to the surface of the cylinder and a leftward jet at a location
well away from the surface of the cylinder. The pattern of ωz shows an inclined
elongated region of negative ωz formed from the right-hand surface of the cylinder,
as well as a cluster of positive (thick lines) ωz apparently formed during the previous
half-cycle. Another positive concentration is located adjacent to the surface of the
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Figure 2. Patterns of instantaneous and phase-averaged velocity and vorticity for a value of
Keulegan-Carpenter number KC=7. Minimum and incremental values of vorticity contours
are ωmin = ± 6 s−1 and �ω = 3 s−1.

cylinder, which represents the initial stage of process of the large-scale elongated
structure.

The set of images (ii) shows, in essence, a mirror image of the patterns of (i)
with respect to the x-axis. Both types of patterns (i) and (ii) are therefore admissible
instantaneous states of the flow structure and, in addition to these states, a symmetrical
mode represented by the set of images (iii) may also occur. The variety of these
sectional patterns is due to the three-dimensional behaviour of the flow structure
along the span of the cylinder, which will be further addressed, in conjunction with
spanwise flow patterns in the following section. In an investigation focusing on a
lower range of KC, Ozgoren & Rockwell (2004) observed conceptually similar, but
less pronounced, patterns of vorticity ωz at KC= 6.16; they did not address, however,
the corresponding patterns of V and the phase averages of ωz and V .

Each of the images (i) to (iii) occurs at essentially the same phase of the wave cycle,
so it is appropriate to consider their phase averages 〈V 〉 and 〈ωz〉, as indicated in the
right-hand column of figure 2. The consequence is a symmetrical pattern of vortex
formation, whereby the peak levels of vorticity are reduced substantially relative to
the values given in the instantaneous images.

At higher values of Keulegan-Carpenter number, KC= 12, large-scale clusters of
vorticity are formed, as shown in figure 3. The vortices formed are essentially phase
locked to the wave motion. The instantaneous horizontal component U of the water
particle velocity in the wave is determined at an undisturbed location 2.5D to the
left of the centre of the cylinder (outside of the field of view shown here). The time
history of this velocity component U is shown within the boundary of the cylinder
and, furthermore, its vector amplitude is indicated at the left of each image. Since
only phase-locked patterns of vortex formation with respect to the wave motion are
considered in this series, it is appropriate to show patterns of phase-averaged vorticity
〈ωz〉.

In the image N = 1, a large-scale cluster A has been formed, as well as smaller-
scale clusters B and A′, adjacent to the surface of the cylinder. In images N = 2
and 3, cluster A moves toward the centre of the cylinder, while clusters B and A
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Figure 3. Patterns of phase-averaged positive (thick white line) and negative (thin line)
vorticity for one cycle of wave motion (labelled N = 1–13) at a value of Keulegan-Carpenter
number KC= 12. Minimum and incremental values of vorticity are ωmin = ±10 s−1 and
�ω = 5 s−1.

migrate in the clockwise direction about the surface of the cylinder, all in accord
with the direction of the wave motion. In images N = 4 and 5, cluster A interacts
with the surface of the cylinder and, apparently due to three-dimensional effects,
experiences substantial attenuation of peak vorticity and circulation. Meanwhile,
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cluster B accumulates vorticity until, as indicated in image N = 6, it appears as a
distinct shed cluster of vorticity. In the meantime, positive and negative clusters of
vorticity have formed immediately adjacent to the surface of the cylinder; they are
designated as C and B′. At a later instant N = 7, B and B′ are temporarily joined,
apparently due to the continued shedding of negative vorticity into B′.

In subsequent images, extending from N =8 to 13, the cycle of vortex formation
is completed by the large-scale cluster B moving towards and interacting with the
cylinder, while experiencing a substantial decrease of peak vorticity. In the meantime,
cluster C rotates about the surface of the cylinder in the counterclockwise direction,
then departs from the surface.

The entire sequence of images of figure 3 shows large-scale vortex shedding during
each half-wave cycle, and the shed vortices tend to form a transverse vortex street
in accord with the direction of the wave motion. This pattern of phase-locked
vortex formation is remarkably similar to that deduced on the basis of qualitative
visualization by Williamson (1985) and Kaye (1989), for planar and wave motions
respectively.

Further features of this phase-locked pattern of vortex formation are represented
in figure 4, which shows phase-averaged velocity 〈V 〉, vorticity 〈ωz〉 and streamline
topology 〈ψ〉, as well as instantaneous vorticity ωz. Patterns of 〈V 〉 are shown in the
laboratory reference frame, while the patterns of time-averaged streamlines 〈ψ〉 are
in a reference frame moving at the average velocity over the original field of view, as
described in § 2. Regarding the patterns of 〈V 〉, consideration of the images N = 1 to
13 shows that a well-defined swirl pattern, which is often employed to characterize
the presence of a well-defined vortical structure, occurs only in images N = 1, 7 and
13. Direct comparison with the patterns of 〈ωz〉 reveals that these localized swirls
are associated with large-scale clusters of vorticity well removed from the cylinder
surface. Other well-defined concentrations of vorticity, having smaller circulation, are
located closer to the surface of the cylinder. They are not represented by the patterns
of 〈V 〉 with this reference frame. The dimensionless moment coefficients C∗

x and C∗
y ,

corresponding to the in-line and transverse components respectively, are designated
in the inset of image N = 10. This representation allows interpretation of the images
with respect to the phases of these loading coefficients. In addition, examination of
the variation of the coefficient C∗

y shows that it behaves similarly to the transverse
force generated in planar oscillatory flows (e.g. Williamson 1985), as well as to C∗

y

of mode U generated in an intermediate water wave (Yang & Rockwell 2002). The
coefficient C∗

x , however, shows an almost sinusoidal profile, which mimics C∗
xof mode

S in the intermediate water wave (Yang & Rockwell 2002), but differs from the
severely deformed shape of the peak of the in-line force coefficient observed for
planar oscillatory flows.

Comparison of the patterns of 〈ψ〉 of figure 4 indicates that the centres of spiralling
streamline patterns (foci) generally occur only at the positions of localized swirls of
velocity vectors, i.e. at N = 1, 7, and 13, an exception being the top of the image
at N = 10, which shows a focus corresponding to the cluster of large-scale negative
vorticity 〈ωz〉. That is, even though the reference frame has been shifted substantially
for construction of the patterns of 〈ψ〉, only the largest-scale clusters of vorticity,
which are well removed from the surface of the cylinder, are represented by the foci
of 〈ψ〉. This observation is in accord with the results of Justesen (1991) and Iliadis &
Anagnostopoulos (1998). Despite the fact that these patterns of vortex formation are,
in essence, phase-locked, it is possible to observe variations in the stability of the foci
of the patterns of 〈ψ〉. For example the spiral streamline patterns associated with the
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Figure 4. Comparison of patterns of velocity, vorticity, and streamlines at selected instants
of the wave cycle (N = 1, 4, 7, 10 and 13) for a value of Keulegan-Carpenter number KC= 12.
Patterns of velocity vectors are shown in the laboratory frame, while streamline patterns are
in a frame moving at the average velocity of the (original) field of view. Values of minimum
and incremental vorticity are ωmin = ±10 s−1 and �ω =5 s−1.

foci in images N = 1, 7 and 10 spiral inward towards the focus (centre), and therefore
represent stable foci. On the other hand, the pattern of N = 13 spirals outward,
and therefore represent an unstable focus. Furthermore, the detailed structure of the
interior portion of the spiral streamline patterns can exhibit either one or two closed
streamlines, i.e. limit cycles, as evident in images N =10 and 7.
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Finally, representations of the instantaneous structure of the vortex formation
are given by the patterns of ωz of figure 4. Comparison with the phase-averaged
representations 〈ωz〉 indicates that although the overall features of the larger-scale
concentrations of vorticity are quite similar, the patterns of ωz typically show a
number of embedded small-scale structures.

Figure 5 shows a comparison of patterns of instantaneous and phase-averaged
velocity V , 〈V 〉 and vorticity ωz, 〈ωz〉. The purpose of this comparison is to illustrate
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the typical deviations of the instantaneous states of the flow. These images are
referenced with respect to the corresponding traces of the in-line C∗

x/4 and transverse
C∗

y moment coefficients. The instants at which images were acquired are in accord
with the local particle trajectory of the wave motion, as shown in the lower right
schematic of figure 5. These instants approximately correspond to the maximum
negative value of C∗

y . Due to the fact that the period of C∗
y is one-half that of C∗

x ,
images N =1, 3, and 5 correspond to decreasing C∗

x , while images N = 2, 4, and
6 represent increasing C∗

x . It is evident that the patterns of ωz show a number of
small-scale concentrations of positive and negative vorticity that are not evident in
the corresponding phase-averaged pattern of 〈ωz〉. These small-scale concentrations
have two origins. The first, which is evident within the large-scale clusters of ωz, arises
from a Kelvin–Helmholtz-like instability of the separating shear layer that feeds into
the large-scale cluster of vorticity. The second origin of the small-scale concentration
is the residual of larger-scale concentrations of vorticity formed during an earlier part
of the oscillation cycle(s), which have decayed to relatively low values of circulation.

The duration and frequency of occurrence of phase-locked regions over a relatively
large number of wave cycles at KC= 12 can be described as follows. For a continuous
record of 1000 wave cycles, the duration of regions of phase-locking extended
from 3 to 10 wave cycles, i.e. 6 to 20 cycles of the transverse moment coefficient.
Approximately 50 of these phase-locked regions occurred over the record of 1000
wave cycles.

The phase-locked patterns of vorticity represented by the images of figure 5 were
interrupted by non-phase-locked patterns. The variability of these types of patterns,
in relation to the corresponding in-line moment coefficient C∗

x and transverse moment
coefficient C∗

y , is shown in figure 6. Inspection of the trace of C∗
y indicates that it is

strongly modulated, while the form of the in-line coefficient C∗
x is relatively unaffected.

Images N = 1, 3, and 5 are acquired at the same phase in every other wave cycle, as
illustrated in the lower right schematic, which correspond to approximately the same
phase of the trace of C∗

x . At these instants, the value of C∗
y has a local minimum at

N = 1, and broadly ill-defined maxima at N = 3 and 5. The physical origin of these
variations is evident in the patterns of instantaneous vorticity ωz. Images N = 1 and
3 show patterns of ωz that are approximately mirror images of each other, whereas
the image of N = 5 represents an approximately symmetrical pattern, but with the
positive (thick line) vorticity contours having a substantially higher value of peak
vorticity than the negative concentration. Due to this variability of patterns of ωz,

the phase-averaged consequence 〈ωz〉 is a nearly symmetrical pattern of very low-
level vorticity contours. Generally similar observations hold for the images acquired
at N = 2, 4, and 6, which are one-half a wave cycle after images at N = 1, 3 and
5 respectively. At N = 2, the concentration of vorticity formed during the present
wave cycle is positive (thick line contours), whereas at N = 4, it is negative (thin line
contours). The previously formed concentrations of vorticity are, however, located at
different streamwise locations. At N = 6, the pattern of vortices has a generally similar
form as for N =2 but, in addition, the negative (thin line) cluster extends around to
the opposite side of the cylinder while retaining substantial levels of vorticity. Again,
the consequence of this high variability in states of vortex formation is the tendency to
form a symmetrical, very low-level pattern, as indicated in the corresponding averaged
image of 〈ωz〉.

At a higher value of Keulegan–Carpenter number, KC= 18, the phase-locked
patterns of phase-averaged vorticity 〈ωz〉 take the forms shown in figure 7. The format
and interpretation of this set of images are the same as for figure 3, representing
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Figure 6. Direct comparison of patterns of instantaneous and phase-averaged velocity and
vorticity with instantaneous traces of moment coefficients C∗

x and C∗
y due to in-line and

transverse forces for N = 1–6. For this sequence, C∗
y is phase locked neither with C∗

x nor the
wave motion. Keulegan-Carpenter number KC= 12. Patterns of velocity are in the laboratory
frame. Minimum and incremental values of vorticity are ωmin = ±10 s−1 and �ω = 5 s−1.

the lower value of KC= 12. The time trace of the horizontal component U of the
wave in the undisturbed region of the flow is given within the boundary of each
cylinder, and its vector amplitude is drawn at the left of each image. In image N =1,
the large-scale cluster A is formed. At N = 2, the direction of the wave has reversed
and the large-scale cluster moves towards the cylinder, while a previously formed
cluster B migrates along the surface of the cylinder in a counterclockwise direction
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Figure 7. Patterns of phase-averaged positive (thick white line) and negative (thin line)
vorticity for one cycle of wave motion (N = 1–13) at a value of Keulegan-Carpenter number
KC= 18. Minimum and incremental values of vorticity are ωmin = ±10 s−1 and �ω = 5 s−1.

as it continues to develop. At N = 3, cluster A is severely distended as it is drawn in
opposite directions around the surface of the cylinder, while cluster B continues to
develop and cluster C has attained a substantially large value of peak vorticity. At
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N = 4, the peak vorticity and circulation of A have dramatically decreased. Cluster B
has departed from the cylinder, but its successor, D, has rapidly formed and, together
with B, forms an elongated cluster. Meantime cluster C continues to grow. At N =5,
the residuals of both A and B have paired up and become dramatically smaller, while
C and D continue to mature. At N =6 and 7, this process continues, with a portion
of C segregating from a cluster immediately adjacent to the cylinder, as indicated in
N = 7. With the reversal of the wave motion, as indicated in N = 8, clusters C and D
rotate in a counterclockwise direction about the cylinder, accompanied by a decrease
in peak vorticity of C adjacent to the cylinder and preservation of the peak value of
C located away from the cylinder. At N = 9, the elongated cluster of C evident at
N = 8 is no longer detectable, whereas the larger-scale cluster C has moved towards
the cylinder and, simultaneously, D continues its rotation about the cylinder in the
counterclockwise direction. This process continues at N = 10 and 11, and at N = 12, C
and D form a counter-rotating vortex pair, with cluster C having a markedly smaller
value of peak vorticity. Furthermore, F, the successor to D, has rapidly formed, and
the cluster E adjacent to the surface of the cylinder, which was evident at N =11, has
attained a much higher peak value of vorticity. At N = 13, clusters F and E continue
to develop immediately adjacent to the surface of the cylinder, whereas C and D
move well away from the cylinder.

Viewing the aforementioned development of vortex patterns in its entirety, it is
generally similar to that represented by the qualitative visualization of Williamson
(1985) and Obasaju et al. (1988), which involved planar oscillations. In particular,
the patterns involving formation of a single counter-rotating vortex pair are
fundamentally the same. In comparing with the results of Williamson, whose
observations extended over the range 13 � KC � 15, it should be noted that for
the present set of images, although KC= 18 at the free surface, the local value at the
elevation employed for sectional imaging is KC= 13.9.

Figure 8 shows excerpts from the sequence of figure 7 in comparison with
representative instantaneous patterns of vorticity ωz, as well as time-averaged patterns
of velocity vectors 〈V 〉 and streamlines 〈ψ〉. Comparing, first of all, the patterns of
〈ωz〉 and ωz, one sees that the predominant features of the larger-scale clusters of ωz

are replicated in the phase-averaged patterns 〈ωz〉. The swirl patterns of velocity 〈V 〉
indicate the existence of a large-scale cluster of vorticity only in certain instances,
typically where a large-scale cluster dominates over a neighbouring cluster. This,
however, is not always the case, e.g. the see 〈V 〉 image of N = 10. No large-scale
vortex is suggested in this laboratory reference frame pattern of 〈V 〉. On the other
hand, the streamline 〈ψ〉 topology constructed in a reference frame corresponding
to the average velocity over the original field of view, as discussed in § 2, does
show more clearly a larger number of the actual clusters of 〈ωz〉, but this type of
representation is still inadequate for identification of coherent vortical structures, such
as the positive and negative clusters immediately adjacent to the surface of the cylinder
at N = 7.

Figure 9 provides three instantaneous states of phase-locked flow patterns, which
occurred sequentially over five wave cycles. These states are represented by V and
ωz in comparison with the corresponding phase-averaged patterns of 〈V 〉 and
〈ωz〉. Generally speaking, the instantaneous patterns show the existence of smaller-
scale vortical substructures, which, as indicated previously, are associated with the
occurrence of a Kelvin–Helmholtz instability during the process of vortex formation.
This train of smaller-scale concentrations, which culminates in a larger-scale cluster
of vorticity, is particularly evident in the images of ωz at N =2, 4 and 6.
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Figure 8. Comparison of patterns of velocity, vorticity, and streamlines at selected instants
of the wave cycle (N = 1, 4, 7, 10 and 13) for a value of Keulegan-Carpenter number KC= 18.
Patterns of velocity vectors are shown in the laboratory frame, while streamline patterns are
in a frame moving at the average velocity of the (original) field of view. Values of minimum
and incremental vorticity are ωmin = ±10 s−1 and �ω =5 s−1.

On the other hand, the non-phase-locked patterns of figure 10 are markedly more
complex, and the trace of the transverse moment coefficient C∗

y is highly irregular.
Furthermore, by examining the instants along the trace C∗

y at which images N = 1 to
6 were acquired, it is evident that the values of C∗

y are always very small. Generally
speaking, the patterns of ωz are quite non-repetitive for the series N = 1, 3 and 5.
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Figure 9. Direct comparison of patterns of instantaneous and phase-averaged velocity and
vorticity with instantaneous traces of moment coefficients C∗

x and C∗
y due to in-line and

transverse forces for N =1–6. In this case, C∗
y is nearly phase locked with both C∗

x and the
wave motion. Keulegan-Carpenter number KC= 18. Patterns of velocity are in the laboratory
frame. Minimum and incremental values of vorticity are ωmin = ±10 s−1 and �ω = 5 s−1.

A well-defined pattern of significant vorticity level is, however, evident in the image
of 〈ωz〉. For the series N = 2, 4 and 6, the patterns at N = 4 and 6 are, in a broad
sense, nearly mirror images of each other, whereas those at N =2 appear to bear no
particular relationship to the others. The phase-averaged consequence in the image
of 〈ωz〉 results in very low levels of vorticity.
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Figure 10. Direct comparison of patterns of instantaneous and phase-averaged velocity and
vorticity with instantaneous traces of moment coefficients C∗

x and C∗
y due to in-line and

transverse forces for N = 1–6. For this sequence, C∗
y is phase locked neither with C∗

x nor the
wave motion. Keulegan-Carpenter number KC=18. Patterns of velocity are in the laboratory
frame. Minimum and incremental values of vorticity are ωmin = ±10 s−1 and �ω = 5 s−1.

4. Patterns of three-dimensional flow structure
The patterns of three-dimensional flow structure in the very near wake of the

cylinder are given in figures 11 to 13. They were obtained using the orientation of
the laser sheet in the (y, z)-plane as indicated in the side and end views of figure 1(a).
Further details of this arrangement are described in § 2. In essence, the plane of the
laser sheet was located at a distance of 0.5D from the surface of the cylinder, where D
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is the diameter. Furthermore, the patterns of three-dimensionality were characterized
at an instant that corresponded to the onset of pronounced patterns of streamwise
vorticity ωx and cross-stream velocity v. In all images, this instant corresponds to
a location midway from the crest to the trough of the wave at the position of the
cylinder, as illustrated by the surface wave in figure 1(b). This instant also corresponds
to very small values of the moment coefficient C∗

x , which represents the in-line force.
As a reference, a scale showing the local values of KC as a function of water depth
is embedded in an image of vorticity patterns in each of figures 11 to 13. For each
phase-averaged representation, unless otherwise specified, four instantaneous images
were employed.

At the lowest value of KC= 7, which is represented in figure 11, the patterns of
instantaneous cross-stream velocity and streamwise vorticity are shown in (a) and
(b). These sets of images show two representative states of the three-dimensionality,
and the relationship between these states and the transverse moment coefficient
C∗

y is evident in each of the schematics. Compare, first of all, the patterns of v.
In figure 11(a), a quasi-two-dimensional region of v extends to a certain depth
immediately beneath the free surface. This region dominates the transverse moment
coefficient C∗

y . Below this region are well-defined alternating patterns of concentrations
of v, which have a nearly constant wavelength along the span of the cylinder. For
figure 11(b), however, these concentrations, or cells, extend much closer to the free
surface, and the trace of the transverse moment coefficient C∗

y has a substantially
lower magnitude. The corresponding patterns of streamwise vorticity ωx show a more
ordered form in the image in figure 11(a).

Phase-averaged representations are shown in figure 11(c, d), with the (c) set
corresponding to the average of four images and (d) set to thirty-two images.
Comparing these two sets of images, it is evident that the higher the number of
instantaneous images for the phase average, the more symmetric and smoother the
patterns of 〈v〉 and 〈ωx〉. This implies that from cycle to cycle of the wave motion,
the spanwise patterns of the flow structure, i.e. patterns of 〈v〉 and 〈ωx〉 show: (i)
variations in levels of the concentrations of v and ωx; and (ii) drift of the spatial
positions of these concentrations up and down along the centreline of the cylinder.
These effects produce the types of plan view images of figure 2, which represent the
sectional vortex shedding. It should be noted that by employing low-level contours in
a larger number of instantaneous patterns during the averaging process, it is possible
to generate a symmetric phase-averaged pattern in the region of low KC. For the
present study, the focus is on the larger-scale structures near the free surface, so these
averages are not provided herein.

The issue arises as to the effective spanwise wavelength λ of the concentrations of
v and ωx . For images in figure 11(a), the wavelength of v varies in a small range
λ/D = 1.7 to 2.1. This compares with the value of wavelength based on streamwise
vorticity ωx of λ/D = 1.6 to 2.0. For the other instantaneous image, in figure 11(b), the
patterns of v show values of λ/D = 1.6 to 2.3 and, for those regions where periodicity
is evident, the patterns of ωx indicate λ/D = 1.5 to 2.2. Viewing these patterns as a
whole, it is evident that the variation of λ/D along the span of the cylinder is directly
related to local values of KC. This correlation is in accord with previous experimental
and numerical simulations of planar oscillatory flows.

At the larger value of KC= 12 shown in figures 12(a) to 12(d), the three-dimensional
distortions in the near wake region are severe. Phase-averaged velocity vectors 〈V 〉,
cross-stream velocity 〈v〉 and streamwise vorticity 〈ωx〉, are shown in conjunction with
instantaneous cross-stream velocity v and streamwise vorticity ωx . By examination of
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Figure 11. Contours of constant transverse (horizontal) velocity component v and streamwise
vorticity ωx . (a, b) Instantaneous patterns in relation to moment coefficients C∗

x and C∗
y due

to in-line and transverse forces. (c, d) Phase-averaged representations based on four images
and thirty-two images. For contours of instantaneous v, minimum and incremental values are
vmin = ±7.5 mm s−1 and �v =2.5 mm s−1; for contours of instantaneous ωx, ωmin = ±0.6 s−1

and �ω = 0.2 s−1. For phase-averaged patterns, vmin = ± 6 mm s−1 and �v = 1.5mm s−1;
ωmin = ±0.2 s−1 and �ω = 0.1 s−1. KC= 7.

a large number of images, all taken at the same phase of the wave motion, which
corresponds to a nearly zero value of the in-line moment coefficient C∗

x , as indicated
in the schematic, it was possible to classify the patterns of the near wake into four
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Figure 12. For caption see facing page.

forms, designated as patterns I to IV in figures 12(a) to 12(d). Pattern I represents the
case where the transverse velocity component 〈v〉 is in phase over a relatively large
extent from the free surface to a location approximately midway along the span of
the cylinder shown in the field of view. At the other extreme, represented by pattern
IV, this region of constant phase, i.e. constant direction of the component 〈v〉, is
extremely small. Patterns II and III represent transformations between these extreme
states of three-dimensionality. Furthermore, the magnitude of the transverse moment
coefficient C∗

y decreases substantially for patterns I to IV, with nearly undetectable
amplitudes for pattern IV.
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Figure 12. Comparison of patterns of velocity vectors V , contours of constant transverse
(horizontal) velocity v and contours of streamwise vorticity ωx for patterns (a) I , (b) II, (c)
III, and (d) IV. Instantaneous v and ωx can be compared with the instantaneous moment
coefficients C∗

x and C∗
y due to the in-line and transverse forces. KC=12. Minimum and

incremental values of v are vmin = ±10 mm s−1 and �v = 5 mm s−1. For ωx, ωmin = ±1 s−1 and
�ω = 1 s−1.

Consider, first of all, the various representations of pattern I of figure 12(a), which
corresponds to phase-locked quasi-two-dimensional vortex formation, as described
in figures 3 to 5. The velocity vectors 〈V 〉 of figure 12(a) are predominantly in the
downward direction, due to downward movement of the free surface of the wave.
Moreover, they are, at least over the top half of the image, inclined to the left, which
corresponds to a negative value of cross-stream velocity 〈v〉. This pattern is evident
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in the contours of constant 〈v〉 over the upper half of the image. On the other hand,
over the lower half of the image, the velocity vectors on either side of the cylinder
are inclined towards the cylinder centreline, giving patterns of positive (thick line)
and negative (thin line) 〈v〉. This lower half of the field of view corresponds to values
of KC extending approximately from 6.5 to 4, and in this region of KC, the vortex
formation process is, in its very initial stages, associated with alternating positive and
negative small-scale cells having short spanwise wavelength. This pattern contrasts
with the one-sided large-scale vortex formation that occurs at higher values of KC
as one approaches the free surface. The representative pattern of instantaneous v

shows a remarkably similar form to the phase averaged 〈v〉. The patterns of phase-
averaged streamwise vorticity 〈ωx〉, in figure 12(a), are dominated by positive (thick
line) 〈ωx〉. The corresponding instantaneous image shows these positive clusters at
roughly the same spanwise location, but smaller-scale negative concentrations are
generally interspersed between them.

The features of pattern II are given in figure 12(b). In this case, the spanwise extent
of the contours of negative 〈v〉 and v is substantially reduced relative to that of pattern
I . At the lower edge of this pattern, positive clusters of 〈v〉 and v start to develop and
gradually become dominant along the span. At sufficiently large depth beneath the
free surface, both positive and negative contours exist side by side. The corresponding
patterns of phase-averaged vorticity 〈ωx〉 and instantaneous vorticity ωx are not well
organized, and it is difficult to deduce an effective spanwise wavelength λ/D.

In pattern III, shown in figure 12c, the phase-averaged velocity vectors 〈V 〉 show
a wavy-like form, whose amplitude decreases with increasing depth beneath the free
surface. The consequences of this waviness are the patterns of 〈v〉 and v, which show
alternating large-scale clusters of 〈v〉 along the span. Moreover, the depthwise extent
of the uppermost set of contours of negative 〈v〉 is significantly smaller than that of
pattern II. The patterns of phase-averaged 〈ωx〉 and instantaneous ωx vorticity are
relatively unorganized. If one considers, however, the pattern of 〈ωx〉, it is evident
that the peak values occur at the zero crossings of the corresponding pattern of 〈v〉,
and, according to these patterns, λ/D = 6.5.

The extreme pattern IV, in figure 12(d), shows a larger number of smaller-scale
clusters of 〈v〉 and v along the span of the cylinder and, furthermore, the depthwise
extent of the region of negative (thin line) 〈v〉 and v immediately beneath the free-
surface has decreased dramatically relative to its extent shown in the images of
pattern III. The patterns of streamwise vorticity 〈ωx〉 and ωx now show a more
ordered form. Again, their extrema occur at the zero crossings of the patterns of 〈v〉
and v. The spanwise wavelength of the patterns of all of the aforementioned patterns
is approximately λ/D = 6.5.

For the highest value of KC= 18, the layout and format of patterns I to IV,
which are shown in figures 13(a) to 13(d), is the same as that for figures 12(a) to
12(d). Whereas the patterns of I to IV for figures 12(a) to 12(d) allow classification
according to the depthwise extent of the negative clusters of 〈v〉 and v immediately
beneath the free surface, such a classification is not possible at this value of KC= 18.
Patterns I to IV are, however, generally defined in terms of an increasing number
of zero crossings between the positive and negative regions of 〈v〉 beneath the free
surface. Note the switch in sign of 〈v〉, at an elevation immediately beneath the free
surface, of pattern II relative to pattern I . It is reflected in the sign of the transverse
moment coefficient C∗

y , which is essentially inverted for pattern II relative to pattern
I . For patterns III and IV, the magnitudes of C∗

y averaged over the cycle of wave
motion are very small.
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Figure 13(a, b). For caption see next page.

Consider pattern I in figure 13(a); it is phase-locked with the wave motion, and
corresponds to the quasi-two-dimensional vortex formation discussed in figures 7
to 9. Immediately beneath the free surface, contours of positive (thick line) 〈v〉
and v are evident. Embedded within these larger-scale structures are smaller-scale
concentrations having a spanwise wavelength of approximately λ/D = 2.4. At a larger
depth beneath the free surface, negative (thin line) contours of 〈v〉 and v extend over
a substantial spanwise extent.

In pattern II of figure 13(b), the images show negative contours of v and 〈v〉
immediately beneath the free surface, in comparison with the positive contours of
pattern I. Hence the inversion of the peak of C∗

y occurs, as indicated in the insets of
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Figure 13. Comparison of patterns of velocity vectors V , contours of constant transverse
(horizontal) velocity v and contours of streamwise vorticity ωx for patterns (a) I , (b) II, (c)
III, and (d) IV. Instantaneous v and ωx can be compared with the instantaneous moment
coefficients C∗

x and C∗
y due to the in-line and transverse forces. KC= 18. Minimum and

incremental values of v are vmin = ±15mm s and �v = 7.5mm s. For ωx, ωmin = ±2 s−1 and
�ω = 2 s−1.

patterns I and II. In pattern III (figure 13c), contours of 〈v〉 and v show a smaller
spanwise extent involving three well-defined clusters of 〈v〉 and v along the span.

Finally, in pattern IV of figure 13 (d), the number of detectable clusters along the
span includes a total of four regions of negative and positive 〈v〉 and v. The contours
of constant 〈ωx〉 and ωx now take on a more ordered form, yet it is difficult to
determine an effective spanwise wavelength λ/D in view of the fact that these clusters
of vorticity show an interlaced pattern along the span of the cylinder.
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Taken together, the images representing patterns I to IV suggest that when a
larger number of zero crossings occur over the upper half of the cylinder displayed
in each layout, the magnitude of the transverse moment coefficient C∗

y is decreased.
For example, in the images corresponding to patterns I and II, the number of zero
crossings of 〈v〉 over the upper half of the cylinder is only one. On the other hand,
for patterns III and IV, two zero crossings occur, and the magnitude of C∗

y decreases
substantially. A reason for this observation is that the velocity amplitudes of the
wave are largest in the region near the free surface, therefore the contribution to the
transverse moment coefficient C∗

y is also the largest in this region.

5. Concluding remarks
Interaction of a deep-water wave with a vertical cylinder can give rise to patterns

of both phase-locked and non-phase-locked quasi-two-dimensional and three-
dimensional patterns. Irrespective of whether the quasi-two-dimensional or three-
dimensional structure is considered, there is a high correlation between patterns
of phase-locked flow structure and high values of transverse loading (moment)
coefficient. The in-line loading (moment) coefficient is, however, relatively unaffected.
Furthermore, even when patterns of flow structure are not phase locked to the wave
motion, the individual non-repetitive patterns of vortex formation, which comprise
the non-locked states, are clearly identifiable and can be categorized into basic
forms.

5.1. Quasi-two-dimensional patterns of vortex formation

At a low value of Keulegan–Carpenter number, KC= 7, phase-locked patterns of
vortex formation are not attainable in the deep-water wave. Mode inversion, whereby
the initially formed locally quasi-two-dimensional vortex occurs from the opposite
side of the cylinder, even though the phase of the wave motion is the same, is an
inherent feature. This mode inversion, along with the occurrence of a symmetrical
mode of vortex formation, yields phase-averaged patterns of quasi-two-dimensional
vortex formation that are symmetrical, and thereby not representative of the actual
physics of the instantaneous states of the flow.

At the sufficiently high values of KC= 12 and 18, phase-locked patterns of locally
two-dimensional vortex formation are attainable, and in this case, the magnitude of
the transverse loading coefficient C∗

y is relatively large. The quasi-two-dimensional
patterns of vortex formation are in general accord with previous observations for
planar oscillatory flows, as well as actual wave flows cited in the Introduction. Such
visualization, and even patterns of phase-averaged instantaneous streamlines in the
wave reference frame, do not show a number of features of the actual patterns of
vorticity: (i) elongated layers of vorticity that lead to the formation of large-scale
clusters away from the cylinder; (ii) pronounced vorticity concentrations immediately
adjacent to the surface of the cylinder; and (iii) small-scale vorticity concentrations
within the elongated layer from the surface of the cylinder.

The foregoing features of the vorticity layers associated with vortex formation are
evident for both phase-locked and non-phase-locked vortex formation. Phase-locked
locally two-dimensional vortex formation from a vertical cylinder in a deep-water
wave does not persist for a large number of cycles of the wave motion. Rather, it
is interrupted by non-phase-locked vortex formation, which can be categorized into
basic patterns of vortices.
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5.2. Three-dimensional flow structure

Along the span of the cylinder, patterns of total velocity V , transverse velocity v, and
streamwise vorticity ωx all provide definitions of basic modes of three-dimensionality.
At KC= 7, well-defined concentrations of v and ωx occur along the entire span,
and the spacing between local concentrations is directly related to the local value
of KC beneath the free surface. In other words, the spanwise wavelength varies in
a continuous fashion with increasing depth beneath the free surface, and the local
wavelength λ/D is in accord with previous experimental and numerical simulations
of planar oscilations, rather than actual wave oscillations.

At larger values of KC, it is possible to identify highly ordered generic patterns of
transverse velocity v. Patterns of streamwise vorticity ωx , which are representative of
the local smaller scales of the flow, are embedded within these ordered patterns of v.
When the patterns contain unidirectional regions of v that extend over a substantial
spanwise extent of the cylinder, especially in the region near the free surface, the
magnitude of the transverse loading coefficient C∗

y is relatively large. In general, as
the number of zero crossings between positive and negative regions of v increases,
the magnitude of C∗

y decreases. In this limit, there is an identifiable relationship with
the corresponding patterns of streamwise vorticity ωx.

Taken together, the patterns of locally two-dimensional and three-dimensional flow
structure indicate that non-phase-locked states of locally two-dimensional patterns are
associated with a relatively large number of zero crossings of the transverse velocity
v along the span of the cylinder. In other words, the existence of locally phase-locked
two-dimensional vortex formation is associated with significant regions of spanwise
extent of like sign of transverse velocity v.
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Dütsch, H., Durst, F., Becker, S. & Lienhart, H. 1998a Low-Reynolds-number flow around an
oscillating circular cylinder at low Keulegan-Carpenter numbers. J. Fluid Mech. 360, 249–271.
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